Add like
Add dislike
Add to saved papers

A simple, reliable method for high-throughput screening for diabetes drugs using 3D β-cell spheroids.

Early screens for new diabetes drugs rely on monolayers of β-cells, which are known to be poor predictors of the in vivo response. Previously, we developed a method to create uniform islet spheroids from freshly-dispersed human donor tissue for drug screening. While the human engineered islets worked well to reduce donor-to-donor variability, it is difficult and expensive to obtain sufficient high-quality human islets for drug testing. Thus, this study utilized a genetically-modified β-cell culture line (INS-1832/13) in 2D and as 3D spheroids and compared the results to human islet tissue formed into spheroids using a high-throughput 384-well format. In response to increasing concentrations of glucose, all 3 groups increased insulin release, but the cultured β-cells (2D and 3D) were more sensitive to glucose (EC50 5.85mM for 2D β-cells, 16.24mM for 3D β-cell spheroids) than the human islet spheroids (EC50 53.69mM). The order of responses to glybenclamide was human spheroids >3D β-cell culture >2D β-cell culture. In response to caffeine, the β-cells in 2D or 3D were more responsive compared to the human islet spheroids (EC50 0.39 and 0.31mM for 2D and 3D β-cells respectively). When exposed to inhibitors of insulin secretion (nifedipine and diazoxide), the responses were more similar between groups. Z' calculations, indicative of assay quality, determined that the 3D β-cell spheroids reached the criteria of an excellent to ideal drug screen assay more consistently than the other test models. In conclusion, 3D β-cell spheroids from a cultured cell line can be used in HTS assays that, according to reference drugs tested here, are sensitive and predictive of the in vivo response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app