Add like
Add dislike
Add to saved papers

F1F0 ATP Synthase-Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline.

Diabetes 2016 November
Mitochondrial abnormalities are well known to cause cognitive decline. However, the underlying molecular basis of mitochondria-associated neuronal and synaptic dysfunction in the diabetic brain remains unclear. Here, using a mitochondrial single-channel patch clamp and cyclophilin D (CypD)-deficient mice (Ppif (-/-)) with streptozotocin-induced diabetes, we observed an increase in the probability of Ca(2+)-induced mitochondrial permeability transition pore (mPTP) opening in brain mitochondria of diabetic mice, which was further confirmed by mitochondrial swelling and cytochrome c release induced by Ca(2+) overload. Diabetes-induced elevation of CypD triggers enhancement of F1F0 ATP synthase-CypD interaction, which in turn leads to mPTP opening. Indeed, in patients with diabetes, brain cypD protein levels were increased. Notably, blockade of the F1F0 ATP synthase-CypD interaction by CypD ablation protected against diabetes-induced mPTP opening, ATP synthesis deficits, oxidative stress, and mitochondria dysfunction. Furthermore, the absence of CypD alleviated deficits in synaptic plasticity, learning, and memory in diabetic mice. Thus, blockade of ATP synthase interaction with CypD provides a promising new target for therapeutic intervention in diabetic encephalopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app