JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of vacancies, light elements and rare-earth metals doping in CeO2.

Scientific Reports 2016 August 25
The magnetic properties and electronic structures of pure, doped and defective cerium oxide (CeO2) have been studied theoretically by means of ab initio calculations based on the density function theory (DFT) with the hybrid HF/DFT technique named PBE0. Carbon (C), nitrogen (N), phosphorus (P), sulphur (S), lanthanum (La) and praseodymium (Pr) doped in CeO2 and CeO2 containing oxygen vacancies (Ov) were considered. Our spin-polarized calculations show that C, N, Pr dopants and Ov defects magnetize the non-magnetic CeO2 in different degree. The optical band gap related to photocatalysis for pure CeO2, corresponding to the ultraviolet region, is reduced obviously by C, N, S, Pr impurities and oxygen vacancies, shifting to the visible region and even further to the infrared range. Especially, N-, S- and Pr-doped CeO2 could be used to photocatalytic water splitting for hydrogen production. As the concentration of Ov increasing up to 5%, the CeO2 exhibits a half-metallic properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app