Add like
Add dislike
Add to saved papers

Highly selective and sensitive response of 30.5 % of sprayed molybdenum trioxide (MoO3) nanobelts for nitrogen dioxide (NO2) gas detection.

The molybdenum trioxide (MoO3) thin films have been successfully deposited onto the glass substrates using chemical spray pyrolysis (CSP) deposition technique at various substrate temperatures ranging from 300°C to 450°C with an interval of 50°C. The effect of substrate temperature on the structural, morphological, optical and gas sensing properties of MoO3 thin films has been thoroughly investigated. X-ray diffraction analysis reveals that all the films have an orthorhombic crystal structure and are polycrystalline in nature. FE-SEM micrographs depict the formation of nanobelts-like morphology. AFM study reveals that the RMS surface roughness of MoO3 thin films increases from 8.6nm to 12nm with increase in substrate temperature from 300°C to 400°C and then decreases to 11.5nm for substrate temperature of 450°C. Optical results show that the band gap of MoO3 thin films decreases from 3.92eV to 3.44eV. The selectivity studies show that the gas response of various gases varies as NH3

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app