Add like
Add dislike
Add to saved papers

Discovery of a Family of Genomic Sequences Which Interact Specifically with the c-MYC Promoter to Regulate c-MYC Expression.

G-quadruplex forming sequences are particularly enriched in the promoter regions of eukaryotic genes, especially of oncogenes. One of the most well studied G-quadruplex forming sequences is located in the nuclease hypersensitive element (NHE) III1 of the c-MYC promoter region. The oncoprotein c-MYC regulates a large array of genes which play important roles in growth regulation and metabolism. It is dysregulated in >70% of human cancers. The silencer NHEIII1 located upstream of the P1 promoter regulates up-to 80% of c-MYC transcription and includes a G-quadruplex structure (Pu27) that is required for promoter inhibition. We have identified, for the first time, a family of seventeen G-quadruplex-forming motifs with >90% identity with Pu27, located on different chromosomes throughout the human genome, some found near or within genes involved in stem cell maintenance or neural cell development. Notably, all members of the Pu27 family interact specifically with NHEIII1 sequence, in vitro. Crosslinking studies demonstrate that Pu27 oligonucleotide binds specifically to the C-rich strand of the NHEIII1 resulting in the G-quadruplex structure stabilization. Pu27 homologous sequences (Pu27-HS) significantly inhibit leukemic cell lines proliferation in culture. Exposure of U937 cells to the Pu27-HS induces cell growth inhibition associated with cell cycle arrest that is most likely due to downregulation of c-MYC expression at the RNA and/or protein levels. Expression of SOX2, another gene containing a Pu27-HS, was affected by Pu27-HS treatment as well. Our data suggest that the oligonucleotides encoding the Pu27 family target complementary DNA sequences in the genome, including those of the c-MYC and SOX2 promoters. This effect is most likely cell type and cell growth condition dependent. The presence of genomic G-quadruplex-forming sequences homologous to Pu27 of c-MYC silencer and the fact that they interact specifically with the parent sequence suggest a common regulatory mechanism for genes whose promoters contain these sequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app