Add like
Add dislike
Add to saved papers

Interfacial magnetic anisotropy from a 3-dimensional Rashba substrate.

We study the magnetic anisotropy which arises at the interface between a thin film ferromagnet and a 3-d Rashba material. We use a tight-binding model to describe the bilayer, and the 3-d Rashba material characterized by the spin-orbit strength α and the direction of broken bulk inversion symmetry n̂ . We find an in-plane uniaxial anisotropy in the ẑ × n̂ direction, where ẑ is the interface normal. For realistic values of α , the uniaxial anisotropy is of a similar order of magnitude as the bulk magnetocrystalline anisotropy. Evaluating the uniaxial anisotropy for a simplified model in 1-d shows that for small band filling, the in-plane easy axis anisotropy scales as α 4 and results from a twisted exchange interaction between the spins in the 3-d Rashba material and the ferromagnet. For a ferroelectric 3-d Rashba material, n̂ can be controlled with an electric field, and we propose that the interfacial magnetic anisotropy could provide a mechanism for electrical control of the magnetic orientation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app