Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

COX7AR is a Stress-inducible Mitochondrial COX Subunit that Promotes Breast Cancer Malignancy.

Scientific Reports 2016 August 24
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, plays a key role in regulating mitochondrial energy production and cell survival. COX subunit VIIa polypeptide 2-like protein (COX7AR) is a novel COX subunit that was recently found to be involved in mitochondrial supercomplex assembly and mitochondrial respiration activity. Here, we report that COX7AR is expressed in high energy-demanding tissues, such as brain, heart, liver, and aggressive forms of human breast cancer cells. Under cellular stress that stimulates energy metabolism, COX7AR is induced and incorporated into the mitochondrial COX complex. Functionally, COX7AR promotes cellular energy production in human mammary epithelial cells. Gain- and loss-of-function analysis demonstrates that COX7AR is required for human breast cancer cells to maintain higher rates of proliferation, clone formation, and invasion. In summary, our study revealed that COX7AR is a stress-inducible mitochondrial COX subunit that facilitates human breast cancer malignancy. These findings have important implications in the understanding and treatment of human breast cancer and the diseases associated with mitochondrial energy metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app