Add like
Add dislike
Add to saved papers

Microglia-induced activation of non-canonical Wnt signaling aggravates neurodegeneration in demyelinating disorders.

Oligodendrocytes are myelinating cells of the central nervous system. Multiple sclerosis (MS) is a demyelinating disease characterized by both myelin loss and neuronal degeneration. However, the molecular mechanisms underlying neuronal degeneration in demyelinating disorders are not fully understood. In the experimental autoimmune encephalomyelitis (EAE) demyelinating mouse model of MS, inflammatory microglia produce cytokines including interleukin-1β (IL-1β). Since microglia and non-canonical Wnt signaling components in neurons, such as the co-receptor Ror2, were observed in the spinal cord of EAE mice, we postulated that the interplay between activated microglia and spinal neurons under EAE conditions is mediated through non-canonical Wnt signaling. EAE treatment up-regulated in vivo expression of non-canonical Wnt signaling components in spinal neurons through microglial activation. In accordance with the neuronal degeneration detected in the EAE spinal cord in vivo, co-culture of spinal neurons with microglia or the application of recombinant IL-1β up-regulated non-canonical Wnt signaling, and induced neuronal cell death, which was suppressed by the inhibition of the Wnt-Ror2 pathway. Ectopic non-canonical Wnt signaling aggravated the demyelinating pathology in another MS mouse model due to Wnt5a-induced neurodegeneration. The linkage between activated microglia and neuronal Wnt-Ror2 signaling may provide a possible candidate target for therapeutic approaches to demyelinating disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app