Add like
Add dislike
Add to saved papers

Magnetically Assembled SERS Substrates Composed of Iron-Silver Nanoparticles Obtained by Laser Ablation in Liquid.

The widespread application of surface-enhanced Raman scattering (SERS) would benefit from simple and scalable self-assembly procedures for the realization of plasmonic arrays with a high density of electromagnetic hot-spots. To this aim, the exploitation of iron-doped silver nanoparticles (NPs) synthesized by laser ablation of a bulk bimetallic iron-silver target immersed in ethanol is described. The use of laser ablation in liquid is key to achieving bimetallic NPs in one step with a clean surface available for functionalization with the desired thiolated molecules. These iron-silver NPs show SERS performances, a ready response to external magnetic fields and complete flexibility in surface coating. All these characteristics were used for the magnetic assembly of plasmonic arrays which served as SERS substrates for the identification of molecules of analytical interest. The magnetic assembly of NPs allowed a 28-fold increase in the SERS signal of analytes compared to not-assembled NPs. The versatility of substrate preparation and the SERS performances were investigated as a function of NPs surface coating among different thiolated ligands. These results show a simple procedure to obtain magnetically assembled regenerable plasmonic arrays for repeated SERS investigation of different samples, and it can be of inspiration for the realization of other self-assembled and reconfigurable magnetic-plasmonic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app