Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nonparametric overdose control with late-onset toxicity in phase I clinical trials.

Biostatistics 2017 January
Under the framework of Bayesian model selection, we propose a nonparametric overdose control (NOC) design for dose finding in phase I clinical trials. Each dose assignment is guided via a feasibility bound, which thereby can control the number of patients allocated to excessively toxic dose levels. Several aspects of the NOC design are explored, including the coherence property in dose assignment, calibration of design parameters, and selection of the maximum tolerated dose (MTD). We further propose a fractional NOC (fNOC) design in conjunction with a so-called fractional imputation approach, to account for late-onset toxicity outcomes. Extensive simulation studies have been conducted to show that both the NOC and fNOC designs have robust and satisfactory finite-sample performance compared with the existing dose-finding designs. The proposed methods also possess several desirable properties: treating patients more safely and also neutralizing the aggressive escalation to overly toxic doses when the toxicity outcomes are late-onset. The fNOC design is exemplified with a real cancer phase I trial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app