JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Altered functional network architecture in orbitofronto-striato-thalamic circuit of unmedicated patients with obsessive-compulsive disorder.

Human Brain Mapping 2017 January
Dysfunction of corticostriatal loops has been proposed to underlie certain cognitive and behavioral problems associated with various neuropsychiatric disorders, such as obsessive-compulsive disorder (OCD) characterized by repetitive, unwanted thoughts, and behaviors. Although functional abnormalities in the loops involving the orbitofronto-striato-thalamic (OFST) circuitry in patients with OCD have been reported, our understanding of a link between disruptions in the architecture of the intrinsic functional network of the OFST circuit and their symptoms remain incomplete. Using resting-state functional MRI in conjunction with unsupervised clustering and multilevel functional connectivity (FC) techniques, FC of the OFST network and its topological organization in 61 OCD patients versus 61 matched controls were characterized. Patients exhibited disruptions in small-world properties of the OFST circuit, which indicates an imbalance between functional integration and segregation. Patients also showed decreased FC between the central orbitofrontal cortex and dorsomedial striatum but increased FC between the medial thalamus and striatal areas. Using one of the largest samples of unmedicated OCD patients to date, our findings provide evidence supporting the OFST dysconnection hypothesis in OCD as a basic pathophysiological mechanism underlying the disorder, showing the disruption of FC between specific cortical, striatal, and thalamic clusters and aberrant topological patterns of the OFST circuit. Hum Brain Mapp 38:109-119, 2017. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app