EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Renal ischemia and reperfusion assessment with three-dimensional hyperpolarized 13 C, 15 N2-urea.

PURPOSE: The aim of this work was to investigate whether hyperpolarized13 C,15 N2 -urea can be used as an imaging marker of renal injury in renal unilateral ischemic reperfusion injury (IRI), given that urea is correlated with the renal osmotic gradient, which describes the renal function.

METHODS: Hyperpolarized three-dimensional balanced steady-state13 C magnetic resonance imaging (MRI) experiments alongside kidney function parameters and quantitative polymerase chain reaction measurements were performed in rats subjected to unilateral renal ischemia for 60-minute and 24-hour reperfusion.

RESULTS: We revealed a significant reduction in the intrarenal gradient in the ischemic kidney in agreement with cortical injury markers neutrophil gelatinase-associated lipocalin and kidney injury molecule 1, as well as functional kidney parameters.

CONCLUSION: Hyperpolarized functional13 C,15 N2 urea MRI can be used to successfully detect changes in the intrarenal urea gradient post-IRI, thereby enabling in vivo monitoring of the intrarenal functional status in the rat kidney. Magn Reson Med 76:1524-1530, 2016. © 2016 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app