JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The neurocircuitry involved in oxytocin modulation of methamphetamine addiction.

The role of oxytocin in attenuating the abuse of licit and illicit drugs, including the psychostimulant methamphetamine, has been examined with increased ferocity in recent years. This is largely driven by the potential application of oxytocin as a pharmacotherapy. However, the neural mechanisms by which oxytocin modulates methamphetamine abuse are not well understood. Recent research identified an important role for the accumbens core and subthalamic nucleus in this process, which likely involves an interaction with dopamine, glutamate, GABA, and vasopressin. In addition to providing an overview of methamphetamine, the endogenous oxytocin system, and the effects of exogenous oxytocin on drug abuse, we propose a neural circuit through which exogenous oxytocin modulates methamphetamine abuse, focusing on its interaction with neurochemicals within the accumbens core and subthalamic nucleus. A growing understanding of exogenous oxytocin effects at a neurochemical and neurobiological level will assist in its evaluation as a pharmacotherapy for drug addiction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app