Add like
Add dislike
Add to saved papers

Direct Inhibitory Effects of Carbon Monoxide on Six Venoms Containing Fibrinogenolytic Metalloproteinases.

Since the introduction of antivenom administration over a century ago to treat venomous snake bite, it has been the most effective therapy for saving life and limb. However, this treatment is not always effective and not without potential life-threatening side effects. We tested a new paradigm to abrogate the plasmatic anticoagulant effects of fibrinogenolytic snake venom metalloproteinases (SVMP) by inhibiting these Zn(+2) -dependent enzymes directly with carbon monoxide (CO) exposure. Assessment of the fibrinogenolytic effects of venoms collected from the Arizona black rattlesnake, Northern Pacific rattlesnake, Western cottonmouth, Eastern cottonmouth, Broad-banded copperhead and Southern copperhead on human plasmatic coagulation kinetics was performed with thrombelastography in vitro. Isolated exposure of all but one venom (Southern copperhead) to CO significantly decreased the ability of the venoms to compromise coagulation. These results demonstrated that direct inhibition of transition metal-containing venom enzymes by yet to be elucidated mechanisms (e.g. CO, binding to Zn(+2) or displacing Zn(+2) from the catalytic site, CO binding to histidine residues) can in many instances significantly decrease fibrinogenolytic activity. This new paradigm of CO-based inhibition of the anticoagulant effects of SVMP could potentially diminish haemostatic compromise in envenomed patients until antivenom can be administered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app