Journal Article
Review
Add like
Add dislike
Add to saved papers

[Acid-sensing ion channels as a target for neuroprotection: acidotoxicity revisited].

Protons are widespread in cells and serve a variety of important functions. In certain pathological conditions, acid-base balance was disrupted and therefore excessive protons were generated and accumulated, which is termed acidosis and proved toxic to the organism. In the nervous system, it has been reported that acidosis was a common phenomenon and contributed to neuronal injury in various kinds of neurological diseases, such as ischemic stroke, multiple sclerosis and Huntington's disease. Acid-sensing ion channels (ASICs) is the key receptor of protons and mediates acidosis-induced neuronal injury, but the underlying mechanism remains unclear. Traditionally, Ca(2+) influx through homomeric ASIC1a channels has been considered to be the main cause of acidotoxicity. Recent research showed that extracellular protons trigger a novel form of necroptosis in neurons via ASIC1a-mediated serine/threonine kinase receptor interaction protein 1 (RIP1) activation, independent of ion-conducting function of ASIC1a. In addition, ASIC1a was found in mitochondria and regulated mitochondrial permeability transition-dependent neuronal death. In this article, we will review the recent progresses on the mechanisms underlying ASIC-mediated neuronal death and discuss ASIC modulators involved in this process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app