JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Spin-Hall-Effect-Assisted Electroresistance in Antiferromagnets via 10(5) A/cm(2) dc Current.

Scientific Reports 2016 August 23
Antiferromagnet (AFM) spintronics with reduced electrical current is greatly expected to process information with high integration and low power consumption. In Pt/FeMn and Ta/FeMn hybrids, we observe significant resistance variation (up to 7% of the total resistance) manipulated by 10(5) A/cm(2) dc current. We have excluded the contribution of isotropic structural effects, and confirmed the critical role of the spin Hall injection from Pt (or Ta) to FeMn. This electrical current-manipulated resistance (i.e. electroresistance) is proposed to be attributed to the spin-Hall-effect-induced spin-orbit torque in FeMn. Similar results have also been detected in plain IrMn films, where the charge current generates spin current via the spin Hall effect with the existence of Ir atoms. All the measurements are free from external magnetic fields and ferromagnets. Our findings present an interesting step towards high-efficiency spintronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app