JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Endosomal recognition of Lactococcus lactis G121 and its RNA by dendritic cells is key to its allergy-protective effects.

BACKGROUND: Bacterial cowshed isolates are allergy protective in mice; however, the underlying mechanisms are largely unknown. We examined the ability of Lactococcus lactis G121 to prevent allergic inflammatory reactions.

OBJECTIVE: We sought to identify the ligands and pattern recognition receptors through which L lactis G121 confers allergy protection.

METHODS: L lactis G121-induced cytokine release and surface expression of costimulatory molecules by untreated or inhibitor-treated (bafilomycin and cytochalasin D) human monocyte-derived dendritic cells (moDCs), bone marrow-derived mouse dendritic cells (BMDCs), and moDC/naive CD4+ T-cell cocultures were analyzed by using ELISA and flow cytometry. The pathology of ovalbumin-induced acute allergic airway inflammation after adoptive transfer of BMDCs was examined by means of microscopy.

RESULTS: L lactis G121-treated murine BMDCs and human moDCs released TH 1-polarizing cytokines and induced TH 1 T cells. Inhibiting phagocytosis and endosomal acidification in BMDCs or moDCs impaired the release of TH 1-polarizing cytokines, costimulatory molecule expression, and T-cell activation on L lactis G121 challenge. In vivo allergy protection mediated by L lactis G121 was dependent on endosomal acidification in dendritic cells (DCs). Toll-like receptor (Tlr) 13-/- BMDCs showed a weak response to L lactis G121 and were unresponsive to its RNA. The TH 1-polarizing activity of L lactis G121-treated human DCs was blocked by TLR8-specific inhibitors, mediated by L lactis G121 RNA, and synergistically enhanced by activation of nucleotide-binding oligomerization domain-containing protein (NOD) 2.

CONCLUSION: Bacterial RNA is the main driver of L lactis G121-mediated protection against experimentally induced allergy and requires both bacterial uptake by DCs and endosomal acidification. In mice L lactis G121 RNA signals through TLR13; however, the most likely intracellular receptor in human subjects is TLR8.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app