Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quantifying Achilles tendon force in vivo from ultrasound images.

This study evaluated a procedure for estimating in vivo Achilles tendon (AT) force from ultrasound images. Two aspects of the procedure were tested: (i) accounting for subject-specific AT stiffness and (ii) accounting for changes in the relative electromyographic (EMG) intensities of the three triceps surae muscles. Ten cyclists pedaled at 80rpm while a comprehensive set of kinematic, kinetic, EMG, and ultrasound data were collected. Subjects were tested at four crank loads, ranging from 14 to 44Nm (115 to 370W). AT forces during cycling were estimated from AT length changes and from AT stiffness, which we derived for each subject from ultrasound data and from plantar flexion torques measured during isometric tests. AT length changes were measured by tracking the muscle-tendon junction of the medial gastrocnemius (MG) relative to its insertion on the calcaneus. Because the relative EMG intensities of the triceps surae muscles varied with load during cycling, we divided subjects׳ measured AT length changes by a scale factor, defined as the square root of the relative EMG intensity of the MG, weighted by the fractional physiological cross-sectional areas of the three muscles, to estimate force. Subjects׳ estimated AT forces during cycling increased with load (p<0.05). On average, peak forces ranged from 920±96N (14Nm, 115W) to 1510±129N (44Nm, 370W). For most subjects, ankle moments derived from the ultrasound-based AT strains were 5-12% less than the net ankle moments calculated from inverse dynamics (r2 =0.71±0.28, RMSE=8.1±0.33Nm). Differences in the moments increased substantially when we did not account for changes in the muscles׳ relative EMG intensities with load or, in some subjects, when we used an average stiffness, rather than a subject-specific value. The proposed methods offer a non-invasive approach for studying in vivo muscle-tendon mechanics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app