Add like
Add dislike
Add to saved papers

Development of yeast reporter assays for the enhanced detection of environmental ligands of thyroid hormone receptors α and β from Xenopus tropicalis.

Thyroid hormones (THs) are involved in the regulation of metabolic homeostasis during the development and differentiation of vertebrates, particularly amphibian metamorphosis, which is entirely controlled by internal TH levels. Some artificial chemicals have been shown to exhibit TH-disrupting activities. In order to detect TH disruptors for amphibians, we herein developed a reporter assay using yeast strains expressing the thyroid hormone receptors (TRs) α and β together with the transcriptional coactivator SRC-1, all of which were derived from the frog Xenopus tropicalis (XT). These yeast strains responded to endogenous THs (T2, T3, and T4) in a dose-dependent manner. They detected the TR ligand activities of some artificial chemicals suspected to exhibit TH-disrupting activities, as well as TR ligand activity in river water collected downstream of sewage plant discharges, which may have originated from human excrement. Moreover, the responses of XT TR strains to these endogenous and artificial ligands were stronger than those of yeast strains for human TRα and β assays, which had previously been established in our laboratory. These results indicate that the yeast reporter assay system for XT TRα and β is valuable for assessing TR ligand activities in environmental samples that may be particularly potent in amphibians.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app