Add like
Add dislike
Add to saved papers

Influence of spatial resolution and contrast agent dosage on myocardial T1 relaxation times.

Magma 2017 Februrary
OBJECTIVE: Our aim was to study the influence of small variations in spatial resolution and contrast agent dosage on myocardial T1 relaxation time.

MATERIALS AND METHODS: Twenty-nine healthy volunteers underwent cardiovascular magnetic resonance at 3T twice, including a modified look-locker inversion recovery (MOLLI) technique-3(3)3(3)5-for T1 mapping. Native T1 was assessed in three spatial resolutions (voxel size 1.4 × 1.4 × 6, 1.6 × 1.6 × 6, 1.7 × 1.7 × 6 mm(3)), and postcontrast T1 after 0.1 and 0.2 mmol/kg gadobutrol. Partition coefficient was calculated based on myocardial and blood T1. T1 analysis was done per segment, per slice, and for the whole heart.

RESULTS: Native T1 values did not differ with varying spatial resolution per segment (p = 0.116-0.980), per slice (basal: p = 0.772; middle: p = 0.639; apex: p = 0.276), and globally (p = 0.191). Postcontrast T1 values were significantly lower with higher contrast agent dosage (p < 0.001). The global partition coefficient was 0.43 ± 0.3 for 0.2 and 0.1 mmol gadobutrol (p = 0.079).

CONCLUSION: Related to the tested MOLLI technique at 3T, very small variations in spatial resolution (voxel sizes between 1.4 × 1.4 × 6 and 1.7 × 1.7 × 6 mm(3)) remained without effect on the native T1 relaxation times. Postcontrast T1 values were naturally shorter with higher contrast agent dosage while the partition coefficient remained constant. Further studies are necessary to test whether these conclusions hold true for larger matrix sizes and in larger cohorts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app