Add like
Add dislike
Add to saved papers

Inducible and naturally occurring regulatory T cells enhance lung allergic responses through divergent transcriptional pathways.

BACKGROUND: Regulatory T cells attenuate development of asthma in wild-type (WT) mice, with both naturally occurring regulatory T (nTreg) cells and inducible regulatory T (iTreg) cells exhibiting suppressive activity. When transferred into CD8-deficient (CD8-/- ) recipients, both cell types enhanced development of allergen-induced airway hyperresponsiveness.

OBJECTIVE: We sought to determine whether the pathways leading to enhancement of lung allergic responses by transferred nTreg and iTreg cells differed.

METHODS: nTreg cells (CD4+ CD25+ ) were isolated from WT mice and iTreg cells were generated from WT CD4+ CD25- T cells after activation in the presence of TGF-β and transferred into sensitized CD8-/- recipients before challenge. Development of airway hyperresponsiveness, cytokine levels, and airway inflammation were monitored.

RESULTS: Transfer of nTreg cells enhanced lung allergic responses, as did transfer of iTreg cells. Although anti-IL-13 reduced nTreg cell-mediated enhancement, it was ineffective in iTreg cell-mediated enhancement; conversely, anti-IL-17, but not anti-IL-13, attenuated the enhancement by iTreg cells. Recovered iTreg cells from the lungs of CD8-/- recipients were capable of IL-17 production and expressed high levels of signature genes of the TH 17 pathway, RORγt and Il17, whereas reduced expression of the Treg cell key transcription factor forkhead box p3 (Foxp3) was observed. In vitro exogenous IL-6-induced IL-17 production in iTreg cells, and in vivo conversion of transferred iTreg cells was dependent on recipient IL-6.

CONCLUSIONS: iTreg cells, similar to nTreg cells, exhibit functional plasticity and can be converted from suppressor cells to pathogenic effector cells, enhancing lung allergic responses, but these effects were mediated through different pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app