JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Increased susceptibility of prenatal food restricted offspring to high-fat diet-induced nonalcoholic fatty liver disease is intrauterine programmed.

The present study aims to explore the mechanisms of fetal origin of high susceptibility to adult high-fat diet induced-nonalcoholic fatty liver disease in rat offspring undergoing intrauterine growth retardation (IUGR) induced by prenatal food restriction (FR) from gestational day 11 until full-term delivery. We observed that adult IUGR offspring rats exhibited gender-dependent catch-up growth with lower serum corticosterone (CORT) but up-regulation of the insulin-like growth factor 1 (IGF1) pathway, higher hepatic Kleiner scores and lower lipid export and oxidation. Furthermore, fetal IUGR offspring rats showed lower body weights with higher serum CORT but down-regulated IGF1 pathway, which was accompanied by enhanced lipid de novo synthetic gene expression, lower lipid output and oxidation gene expression. It is suggested that a "two-programming" mechanism, which refers to the adverse intrauterine programming of hepatic lipid de novo synthesis and glucocorticoid-IGF1 axis programming associated with postnatal catch-up growth, could explain the increased susceptibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app