Add like
Add dislike
Add to saved papers

Estradiol-ERβ2 signaling axis confers growth and migration of CRPC cells through TMPRSS2-ETV5 gene fusion.

Oncotarget 2016 August 18
Estrogen receptor beta (ERβ) splice variants are implicated in prostate cancer (PC) progression; however their underlying mechanisms remain elusive. We report that non-canonical activation of estradiol (E2)-ERβ2 signaling axis primes growth, colony-forming ability and migration of the androgen receptor (AR)-null castration-resistant PC (CRPC) cells under androgen-deprived conditions (ADC). The non-classical E2-ERβ2 mediates phosphorylation and activation of Src-IGF-1R complex, which in turn triggers p65-dependent transcriptional upregulation of the androgen-regulated serine protease TMPRSS2:ETV5a/TMPRSS2:ETV5b gene fusions under ADC. siRNA silencing of TMPRSS2 and/or ETV5 suggests that TMPRSS2:ETV5 fusions facilitates the E2-ERβ induced growth and migration effects via NF-κB-dependent induction of cyclin D1 and MMP2 and MMP9 in PC-3 cells. Collectively, our results unravel the functional significance of oncogenic TMPRSS2:ETV5 fusions in mediating growth and migration of E2-ERβ2 signaling axis in CRPC cells. E2-ERβ2 signaling axis may have significant therapeutic and prognostic implications in patients with CRPC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app