Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Probing Heterogeneity and Bonding at Silica Surfaces through Single-Molecule Investigation of Base-Mediated Linkage Failure.

The nature of silica surfaces is relevant to many chemical systems, including heterogeneous catalysis and chromatographies utilizing functionalized-silica stationary phases. Surface linkages must be robust to achieve wide and reliable applicability. However, silyl ether-silica support linkages are known to be susceptible to detachment when exposed to basic conditions. We use single-molecule spectroscopy to examine the rate of surface linkage failure upon exposure to base at a variety of deposition conditions. Kinetic analysis elucidates the role of thermal annealing and addition of blocking layers in increasing stability. Critically, it was found that successful surface modification strategies alter the rate at which base molecules approach the silica surface as opposed to reducing surface linkage reactivity. Our results also demonstrate that the innate structural diversity of the silica surface is likely the cause of observed heterogeneity in surface-linkage disruption kinetics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app