Add like
Add dislike
Add to saved papers

Osteoprotegerin deficiency leads to deformation of the articular cartilage in femoral head.

Osteoarthritis (OA) was a degenerative joint disease characterized by articular cartilage degradation and extensive remodeling of the subchondral bone. Multiple lines of evidence indicated that Osteoprotegerin (OPG), a member of TNF receptor superfamily that was expressed in the chondrocytes of articular cartilage and adjacent locations in the physiological setting, was involved in maintaining integrity of articular cartilage. OPG could prevent subchondral bone from resorption, and also protect cartilage from degradation. In this study, we used Osteoprotegerin-knockout mice (Opg-KO mice) to find out the role of OPG in articular cartilage. We examined articular cartilage in the femoral head of Opg-KO mice began in early adulthood using modern molecular and imaging methods. We found cartilage changes starting from adulthood and progressively with age, reminiscent of pathological changes in OA. Deficiency of OPG caused thinned articular cartilage and extensive remodeling of the subchondral bone in femoral head in comparison with wild-type mice (WT mice). Also, the articular cartilage of femoral head expressed significantly less of Aggrecan, Col-II and Col-X, but more Col-I and Matrix Metalloproteinases-13 (Mmp-13) than WT mice both at gene and protein level. Moreover, increased chondrocyte apoptosis and decreased chondrocyte proliferation were observed in femoral head of Opg-KO mice compared to WT mice. These data suggested that OPG played an important role in maintaining the homeostasis of articular cartilage of femoral head.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app