JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Creatine CEST MRI for Differentiating Gliomas with Different Degrees of Aggressiveness.

PURPOSE: Creatine (Cr) is a major metabolite in the bioenergetic system. Measurement of Cr using conventional MR spectroscopy (MRS) suffers from low spatial resolution and relatively long acquisition times. Creatine chemical exchange saturation transfer (CrCEST) magnetic resonance imaging (MRI) is an emerging molecular imaging method for tissue Cr measurements. Our previous study showed that the CrCEST contrast, obtained through multicomponent Z-spectral fitting, was lower in tumors compared to normal brain, which further reduced with tumor progression. The current study was aimed to investigate if CrCEST MRI can also be useful for differentiating gliomas with different degrees of aggressiveness.

PROCEDURES: Intracranial 9L gliosarcoma and F98 glioma bearing rats with matched tumor size were scanned with a 9.4 T MRI scanner at two time points. CEST Z-spectra were collected using a customized sequence with a frequency-selective rectangular saturation pulse (B1  = 50 Hz, duration = 3 s) followed by a single-shot readout. Z spectral data were fitted pixel-wise with five Lorentzian functions, and maps of CrCEST peak amplitude, linewidth, and integral were produced. For comparison, single-voxel proton MR spectroscopy (1 H-MRS) was performed to quantify and compare the total Cr concentration in the tumor.

RESULTS: CrCEST contrasts decreased with tumor progression from weeks 3 to 4 in both 9L and F98 phenotypes. More importantly, F98 tumors had significantly lower CrCEST integral compared to 9L tumors. On the other hand, integrals of other Z-spectral components were unable to differentiate both tumor progression and phenotype with limited sample size.

CONCLUSIONS: Given that F98 is a more aggressive tumor than 9L, this study suggests that CrCEST MRI may help differentiate gliomas with different aggressiveness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app