Add like
Add dislike
Add to saved papers

Novel Homozygous Missense Mutation in SPG20 Gene Results in Troyer Syndrome Associated with Mitochondrial Cytochrome c Oxidase Deficiency.

Troyer syndrome is an autosomal recessive form of hereditary spastic paraplegia (HSP) caused by deleterious mutations in the SPG20 gene. Although the disease is associated with a loss of function mechanism of spartin, the protein encoded by SPG20, the precise pathogenesis is yet to be elucidated. Recent data indicated an important role for spartin in both mitochondrial maintenance and function. Here we report a child presenting with progressive spastic paraparesis, generalized muscle weakness, dysarthria, impaired growth, and severe isolated decrease in muscle cytochrome c oxidase (COX) activity. Whole exome sequencing identified the homozygous c.988A>G variant in SPG20 gene (p.Met330Val) resulting in almost complete loss of spartin in skeletal muscle. Further analyses demonstrated significant tissue specific reduction of COX 4, a nuclear encoded subunit of COX, in muscle suggesting a role for spartin in proper mitochondrial respiratory chain function mediated by COX activity. Our findings need to be verified in other Troyer syndrome patients in order to classify it as a form of HSP caused by mitochondrial dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app