Add like
Add dislike
Add to saved papers

Bromodomain and extra-terminal protein mimic JQ1 decreases inflammation in human vascular endothelial cells: Implications for pulmonary arterial hypertension.

BACKGROUND AND OBJECTIVE: Nuclear factor kappa B (NF-kB)-mediated inflammatory gene expression and vascular endothelial cell proliferation/remodelling are implicated in the pathophysiology of the fatal disease, pulmonary arterial hypertension (PAH). Bromodomain and extra-terminal (BET) proteins are essential for the expression of a subset of NF-kB-induced inflammatory genes. BET mimics including JQ1+ prevent binding of BETs to acetylated histones and down-regulate the expression of selected genes.

METHODS: The effects of JQ1+ on the proliferation of primary human pulmonary microvascular endothelial cells (HPMECs) from healthy subjects were measured by bromodeoxyuridine (BrdU) incorporation. Cell cycle progression was assessed by flow cytometry; mRNA and protein levels of cyclin-dependent kinases (CDKs), inhibitors and cytokines were determined by reverse transcription-quantitative PCR (RT-qPCR), Western blotting or ELISA. Histone acetyltransferase (HAT) and deacetylase (HDAC) activities were determined in nuclear extracts from whole lung of PAH and control patients.

RESULTS: JQ1+ significantly inhibited IL6 and IL8 (IL6 and CXCL8) mRNA and protein in HPMECs compared with its inactive enantiomer JQ1-. JQ1+ decreased NF-kB p65 recruitment to native IL6 and IL8 promoters. JQ1+ showed a concentration-dependent decrease in HPMEC proliferation compared with JQ1--treated cells. JQ1+ induced G1 cell cycle arrest by increasing the expression of the CDK inhibitors (CDKN) 1A (p21cip ) and CDKN2D (p19INK4D ) and decreasing that of CDK2, CDK4 and CDK6. JQ1+ also inhibited serum-stimulated migration of HPMECs. Finally, HAT activity was significantly increased in the lung of PAH patients.

CONCLUSION: Inhibition of BETs in primary HPMECs decreases inflammation and remodelling. BET proteins could be a target for future therapies for PAH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app