Add like
Add dislike
Add to saved papers

Next Generation Multiresponsive Nanocarriers for Targeted Drug Delivery to Cancer Cells.

C-H bond activation of 2-methoxyethylamino-bis(phenolate)-yttrium catalysts allowed the synthesis of BAB block copolymers comprised of 2-vinylpyridine (2VP; monomer A) and diethylvinylphosphonate (DEVP; monomer B) as the A and B blocks, respectively, by rare-earth-metal-mediated group-transfer polymerization (REM-GTP). The inherent multi-stimuli-responsive character and drug-loading and -release capabilities were observed to be dependent on the chain length and monomer ratios. Cytotoxicity assays revealed the biocompatibility and nontoxic nature of the obtained micelles toward ovarian cancer (HeLa) cells. The BAB block copolymers effectively encapsulated, transported, and released doxorubicin (DOX) within HeLa cells. REM-GTP enables access to previously unattainable vinylphosphonate copolymer structures, and thereby unlocks their full potential as nanocarriers for stimuli-responsive drug delivery in HeLa cells. The self-evident consequence is the application of these new micelles as potent drug-delivery vehicles with reduced side effects in future cancer therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app