Add like
Add dislike
Add to saved papers

Effects of perfusion on DTI and DKI estimates in the skeletal muscle.

PURPOSE: In this study, we evaluated the effects of perfusion of the skeletal muscle on diffusion tensor imaging (DTI) and diffusional kurtosis imaging (DKI) parameters and their reproducibility.

METHODS: Diffusion tensor imaging and DKI models, with and without intravoxel incoherent motion (IVIM) correction, were applied to simulated data at different physiological conditions and signal-to-noise ratio levels. Next, the same models were applied to data of the right calf of five healthy volunteers, acquired twice at 3 telsa. For six muscles, we evaluated the correlation of the perfusion signal fraction, with parameters derived from DTI and DKI, and performed repeatability analysis with and without IVIM correction. Additionally, the IVIM correction was compared to a multishell acquisition approach that minimizes perfusion effects on DTI estimates.

RESULTS: Simulations and acquired data showed that DTI and DKI estimates were biased proportionally to the perfusion signal fraction, and that IVIM correction was needed for accurate estimation of the DTI and DKI parameters. However, taking perfusion into account did not improve repeatability.

CONCLUSION: Blood perfusion has an effect on DTI and DKI estimations, but it can be minimized with IVIM correction or multishell acquisition strategies. Magn Reson Med 78:233-246, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app