Add like
Add dislike
Add to saved papers

Nanoscale Layer Transfer by Hydrogen Ion-Cut Processing: A Brief Review Through Recent U.S. Patents.

BACKGROUND: A hydrogen-based Ion-Cut layer-transfer technique, the so-called Ion-Cut or Smart-Cut processing, has been used in transferring a semiconductor membrane onto a desired substrate to reveal unique characteristics on a nanoscale size and to build functional electronic and photonic devices that are used for specific purposes. For example, the sub-100 nm thick silicon membrane transferred onto an insulator became a key substrate for fabricating nanoscale integrated circuit (IC) devices. Recent U.S. patents have exhibited integration of various thinning approaches requiring precision of a few nanometers in fabricating large-area semiconductor nanomembranes, especially for silicon. This paper reviews published patents and work on fabricating sub-100 nm silicon membranes with welldefined features without a chemical-mechanical polishing (CMP) thinning process. This included material analysis leads to ultraprecision thickness in the sub-100 nm region.

METHODS: This paper combines an analysis of peer-reviewed articles and issued patents using focused review keywords of hydrogen implantation, wafer bonding, and layer splitting. The quality of selected patents was appraised based on the authors' 20-year research experience in the field of ultrathin silicon layer-transfer technology.

RESULTS: The paper covered more than 10 U.S. patents that have been filed on hydrogen-based Ion-Cut layer-transfer techniques. These patents described approaches for inserting hydrogen ions to split at a well-defined location and then transfer the as-split silicon membrane at the nanoscale thickness onto a desired substrate. Hydrogen-trap sites, implantation energy, and interface of the distinct doped regions could define the layer-split location. The insertion of high-dose hydrogen ions could be thoroughly achieved by ion implantation, plasma ion immersion implantation (PIII), plasma diffusion, and electrolysis.

CONCLUSION: The article concludes with the discussion of the patent-orientated review of layer-transfer techniques and makes some concrete suggestions for manufacturing the FDSOI substrate, the key material technology to fabricate nanoscale microelectronics for applications in artificial intelligence for "Industry 4.0."

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app