Add like
Add dislike
Add to saved papers

Cell Line and Augument Cellular Uptake Study of Statistically Optimized Sustained Release Capecitabine Loaded Eudragit S100/PLGA(poly(lacticco- glycolic acid)) Nanoparticles for Colon Targeting.

Current Drug Delivery 2017 September 7
BACKGROUND: Capecitabine, an anti cancer drug, has a very short drug elimination half-life (0.49 to 0.89 h). High doses and absence of targeting ability in the colon region may lead to more side effects to the patients with colon cancer.

PURPOSE: To develop and optimize sustained release nanoparticles for effective treatment of colon cancer.

METHODS: Eudragit S100-PLGA(poly (lactic-co-glycolic acid)) nanoparticles were prepared by a double emulsification, solvent evaporation method followed by high-pressure homogenisation evaluated and the particles were evaluated for surface morphology, particle size analysis, polydispersity index, drug content, % entrapment efficiency and in vitro drug release. To optimize the batch a 32 full factorial design was applied. The optimized batch was evaluated for cytotoxicity and cellular uptake study.

RESULTS AND DISCUSSION: The optimized formulation exhibited 179.25 nm mean particle size, 71.27% of drug entrapment efficiency and 81.824% drug release up to 72 h. When the concentration of capecitabine was increased from 50-500 μg/ml, the % cytotoxicity of nanoparticles and capecitabine (pure drug) increased from 8.5 to 97.70% and 2.7 to 82.23%, respectively. As per a cellular uptake study, the optimized nanoparticles were completely uptaken by HT 29 adenocarcinoma cells within 2 to 4 h.

CONCLUSION: Optimized Eudragit S100-PLGA nanoparticles are a promising delivery system for colon targeting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app