Add like
Add dislike
Add to saved papers

Developmental restoration of LTP deficits in heterozygous CaMKIIα KO mice.

The Ca2+ /calmodulin-dependent protein kinase II (CaMKII) is a major mediator of long-term potentiation (LTP) and depression (LTD), two opposing forms of synaptic plasticity underlying learning, memory and cognition. The heterozygous CaMKIIα isoform KO (CaMKIIα+/- ) mice have a schizophrenia-related phenotype, including impaired working memory. Here, we examined synaptic strength and plasticity in two brain areas implicated in working memory, hippocampus CA1 and medial prefrontal cortex (mPFC). Young CaMKIIα+/- mice (postnatal days 12-16; corresponding to a developmental stage well before schizophrenia manifestation in humans) showed impaired hippocampal CA1 LTP. However, this LTP impairment normalized over development and was no longer detected in older CaMKIIα+/- mice (postnatal weeks 9-11; corresponding to young adults). By contrast, the CaMKIIα+/- mice failed to show the developmental increase of basal synaptic transmission in the CA1 seen in wild-type (WT) mice, resulting in impaired basal synaptic transmission in the older CaMKIIα+/- mice. Other electrophysiological parameters were normal, including mPFC basal transmission, LTP, and paired-pulse facilitation, as well as CA1 LTD, depotentiation, and paired-pulse facilitation at either age tested. Hippocampal CaMKIIα levels were ∼60% of WT in both the older CaMKIIα+/- mice and in the younger WT mice, resulting in ∼30% of adult WT expression in the younger CaMKIIα+/- mice; levels in frontal cortex were the same as in hippocampus. Thus, in young mice, ∼30% of adult CaMKIIα expression is sufficient for normal LTD and depotentiation, while normal LTP requires higher levels, with ∼60% of CaMKIIα expression sufficient for normal LTP in adult mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app