Add like
Add dislike
Add to saved papers

Comparison of distributed and compartmental models of drug disposition: assessment of tissue uptake kinetics.

The utility of a circulatory three-compartment model for the assessment of tissue uptake kinetics is tested by comparison with the respective distributed models using pharmacokinetic data of rocuronium in patients These minimal physiologically based models have a common structure consisting of two subsystems representing the lung and the lumped systemic circulation, with two regions, the vascular and tissue space. The distributed models are based on either diffusion-limited tissue distribution, permeability-limited tissue uptake or the assumption of an empirical transit time density function. With a deviation in the estimate of the permeability-surface area product (PS) of about 18 %, the compartmental approach appears as a useful alternative on condition that a priori knowledge of cardiac output is included. It is also shown that the distribution clearance calculated from the parameters of a mammillary compartment model changes proportional to PS and can be used as an indirect measure of permeability-limited tissue uptake of drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app