JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biochemical Characterization of APOBEC3H Variants: Implications for Their HIV-1 Restriction Activity and mC Modification.

APOBEC3H (A3H) is the most polymorphic member of the APOBEC3 family. Seven haplotypes (hap I-VII) and four mRNA splicing variants (SV) of A3H have been identified. The various haplotypes differ in anti-HIV activity, which is attributed to differences in protein stability, subcellular distribution, and/or RNA binding and virion packaging. Here, we report the first comparative biochemical studies of all the A3H variants using highly purified proteins. We show that all haplotypes were stably expressed and could be purified to homogeneity by Escherichia coli expression. Surprisingly, four out of the seven haplotypes showed high cytosine (C) deaminase activity, with hap V displaying extremely high activity that was comparable to the highly active A3A. Furthermore, all four haplotypes that were active in C deamination were also highly active on methylated C (mC), with hap II displaying almost equal deamination efficiency on both. The deamination activity of these A3H variants correlates well with their reported anti-HIV activity for the different haplotypes, suggesting that deaminase activity may be an important factor in determining their respective anti-HIV activities. Moreover, mC deamination of A3H displayed a strong preference for the sequence motif of T-mCpG-C/G, which may suggest a potential role in genomic mC modification at the characteristic "CpG" island motif.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app