JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Angiotensin 2 type 1 receptor blockade different affects postishemic kidney injury in normotensive and hypertensive rats.

Many studies demonstrated that angiotensin 2 type 1 receptor (AT1R) blockade accelerates renal recovery in post-ischaemic kidney but there are many controversies related to its net effect on kidney structure and function. During the past years, our research group was trying to define the pathophysiological significance of the renin-angiotensin system on post-ischemic acute renal failure (ARF) development in normotensive Wistar as well as hypertensive rats (SHR). This review mostly summarizes our experience in that field. Our previous studies in normotensive rats revealed that AT1R blockade, except slightly renal vascular resistance improvement, had no other obvious beneficial effects, and therefore implies angiotensin 2 (Ang-2) overexpression as non-dominant on kidney reperfusion injuries development. Similarly it was observed in Wistar rats with induced mild (L-NAME, 3 mg/kg b.w.) nitric oxide (NO) deficiency. Expectably, in strong induced (L-NAME, 10 mg/kg b.w.) NO deficiency associated with ARF, massive tubular injuries indicate harmful effects of AT1R blockade, implying strongly disturbed glomerular filtration and suggesting special precaution related to AT1R blockers usage. Opposite to previous, by our opinion, AT1R antagonism promises new advance in treatment of essentially hypertensive subjects who develop ARF. Increased glomerular filtration, diminished oxidative stress, and most importantly improved tubular structure in postishemic SHR treated with AT1R blocker losartan, implicate Ang-2 over production as potently agent in the kidney ischemic injury, partly trough generation of reactive oxygen species. These data contribute understanding the pathogenesis of this devastating illness in hypertensive surroundings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app