Add like
Add dislike
Add to saved papers

Preparation and transmission characteristics of a mid-infrared attenuated total reflection hollow waveguide based on a stainless steel capillary tube.

Applied Optics 2016 August 11
Stainless steel (SUS) capillary tubes were examined as a category of structural tube for establishing a metallic attenuated total reflection (ATR) GeO<sub>2</sub> hollow waveguide. GeO<sub>2</sub> films were grown on the inner wall of SUS tubes by different liquid phase deposition (LPD) cycles. Fourier transform infrared (FTIR) spectra, scanning electronic microscope (SEM) image, and transmission loss for a CO<sub>2</sub> laser were measured to investigate the effects of the LPD cycles on the transmission behavior of the hollow waveguide samples. The film thickness and surface roughness increase with every LPD cycle. The two LPD cycle sample has a film thickness equivalent to the CO<sub>2</sub> laser wavelength, while the surface roughness is acceptable. This sample has the lowest transmission loss (0.27  dB/m) among these samples. The bending loss, output beam profile, and full divergence angle (FDA) were further studied. Higher-order modes are excited by bending the sample, inducing additional loss, decentralized beam profile, and larger FDA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app