Add like
Add dislike
Add to saved papers

Characterization of endo-β-mannanase from Enterobacter ludwigii MY271 and application in pulp industry.

β-Mannanases are the second most important enzymes for the hydrolysis of hemicelluloses. An endo-β-mannanase from Enterobacter ludwigii MY271 was purified at 11.7 ± 0.2-fold to homogeneity with a final recovery of 15.2 ± 0.2 %. Using purified β-mannanase protein and SDS-PAGE, the molecular mass was found to be 43.16 kDa. The optimal pH and temperature of the enzyme was found to be 7.0 and 55 °C, respectively. The β-mannanase activity was stable over a broad pH range of pH 2.0-10.0. In addition, the purified enzyme was highly activated by several metal ions and chemical reagents, such as Mg(2+), L-cysteine, glutathione (GSH) and β-mercaptoethanol. Whereas the enzyme was strongly inhibited by Hg(2+), Cu(2+), N-bromosuccinimide (NBS), 1-ethyl-3-(3-dimethyl-amino-propyl)-carbodiimide (EDC), phenylmethanesulfonyl fluoride (PMSF), and sodium dodecyl sulfate (SDS). The β-mannanase was highly active towards glucomannan, and showed endo-activity by producing a mixture of oligosaccharides. Moreover, the enzyme displayed a classical endo-type mode on mannooligosaccharides. The β-mannanase coupled with xylanase significantly improved the brightness of kraft pulp, whereas it has no remarkable effect on the tensile strength of the pulp. Our functional studies of the purified β-mannanase indicate that the enzyme is beneficial to industrial applications, in particular, biotechnological processes, such as food, feed and pulp industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app