Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hyperbaric oxygen treatment suppresses withdrawal signs in morphine-dependent mice.

Brain Research 2016 October 2
Hyperbaric oxygen (HBO2) therapy reportedly reduces opiate withdrawal in human subjects. The purpose of this research was to determine whether HBO2 treatment could suppress physical signs of withdrawal in opiate-dependent mice. Male NIH Swiss mice were injected s.c. with morphine sulfate twice a day for 4 days, the daily dose gradually increasing from 50mg/kg on day 1 to 125mg/kg on day 4. On day 5, withdrawal was precipitated by i.p. injection of 5.0mg/kg naloxone. Mice were observed for physical withdrawal signs, including jumping, forepaw tremor, wet-dog shakes, rearing and defecation for 30min. Sixty min prior to the naloxone injection, different groups of mice received either a 30-min or 60-min HBO2 treatment at 3.5atm absolute. HBO2 treatment significantly reduced naloxone-precipitated jumping, forepaw tremor, wet-dog shakes, rearing and defecation. Based on these experimental findings, we concluded that treatment with HBO2 can suppress physical signs of withdrawal syndrome in morphine-dependent mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app