Add like
Add dislike
Add to saved papers

Bioaccessibility of nitro- and oxy-PAHs in fuel soot assessed by an in vitro digestive model with absorptive sink.

Ingestion of soot present in soil or other environmental particles is expected to be an important route of exposure to nitro and oxygenated derivatives of polycyclic aromatic hydrocarbons (PAHs). We measured the apparent bioaccessibility (Bapp) of native concentrations of 1-nitropyrene (1N-PYR), 9-fluorenone (9FLO), anthracene-9,10-dione (ATQ), benzo[a]anthracene-7,12-dione (BaAQ), and benzanthrone (BZO) in a composite fuel soot sample using a previously-developed in vitro human gastrointestinal model that includes silicone sheet as a third-phase absorptive sink. Along with Bapp, we determined the 24-h sheet-digestive fluid partition coefficient (Ks,24h), the soot residue-fluid distribution ratio of the labile sorbed fraction after digestion (Kr,lab), and the maximum possible (limiting) bioaccessibility, Blim. The Bapp of PAH derivatives was positively affected by the presence of the sheet due to mass-action removal of the sorbed compounds. In all cases Bapp increased with imposition of fed conditions. The enhancement of Bapp under fed conditions is due to increasingly favorable mass transfer of target compounds from soot to fluid (increasing bile acid concentration, or adding food lipids) or transfer from fluid to sheet (by raising small intestinal pH). Food lipids may also enhance Bapp by mobilizing contaminants from nonlabile to labile states of the soot. Compared to the parent PAH, the derivatives had larger Kr,lab, despite having lower partition coefficients to various hydrophobic reference phases including silicone sheet. The Blim of the derivatives under the default conditions of the model ranged from 65.5% to 34.4%, in the order, 1N-PYR > ATQ > 9FLO > BZO > BaAQ, with no significant correlation with hydrophobic parameters, nor consistent relationship with Blim of the parent PAH. Consistent with earlier experiments on a wider range of PAHs, the results suggest that a major determinant of bioaccessibility is the distribution of chemical between nonlabile and labile states in the original solid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app