Add like
Add dislike
Add to saved papers

Quantum phase transitions in Sn bilayer based interfacial systems by an external strain.

Using first-principle calculations, we report for the first time, the changes in electronic structures of a single bilayer Sn stacked on a single bilayer Sb(Bi) and on a single quintuple layer Sb2Te3 induced by both interface polarization and strain. With BL Bi and QL Sb2Te3 substrates, the stanene tends to have a low-buckled configuration, whereas with BL Sb substrate, the stanene prefers to form high-buckled configurations. For strained Sn/Sb(Bi) system, we find that the Dirac cone state is not present in the band gap, whereas in strained Sn/Sb2Te3 system, spin-polarized Dirac cone can be introduced into the band gap. We discuss why tensile strain can result in the Dirac cone emerging at the K point based on a tight-binding lattice model. This theoretical study implies the feasibility of realizing quantum phase transitions for Sn thin films on suitable substrates. Our findings provide an effective manner in manipulating electronic structures and topological states in interfacial systems by using interface polarization and strain, which opens a new route for realizing atomically thin spintronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app