Add like
Add dislike
Add to saved papers

[Composition of potassium channels in normal rat coronary smooth muscle cells and activation effects of docosahexaenoic acid].

OBJECTIVE: To investigate the composition of potassium channels in normal rat coronary smooth muscle cells (CASMCs) and the activation effects of docosahexaenoic acid (DHA).

METHODS: CASMCs were isolated by enzyme digestion.Effects of different types of potassium channel blockers and/or DHA on potassium channels currents were studied by whole-cell patch clamp technique.

RESULTS: Potassium currents were significantly increased with 5 μmol/L DHA perfusion (P<0.05). The current density was increased from (52.80±6.68) pA/pF to (110.09±13.39) pA/pF (P<0.05) after DHA perfusion when the stimulation voltage was 100 mV.Compared with baseline, potassium currents were significantly decreased by various inhibitor perfusion (tetraethylammonium: (49.63±5.75) pA/pF vs. (13.96±2.18) pA/pF; ibritoxin: (50.67±7.89) pA/pF vs. (26.53±4.68) pA/pF; TRAM-34: (52.60±7.02) pA/pF vs. (46.05±7.60) pA/pF; apamin: (51.97±3.83) pA/pF vs. (44.89±5.04) pA/pF; 4-aminopyridine: (51.19±3.44) pA/pF vs. (29.92±2.81) pA/pF; glyburide: (49.67±1.77) pA/pF vs. (49.61±1.87) pA/pF, all P<0.05). In presence of different inhibitors, potassium channel current densities were increased after DHA perfusion except tetraethylammonium (tetraethylammonium: ( 12.79±1.89) pA/pF; ibritoxin: (67.08±5.54) pA/pF; TRAM-34: (117.91±21.79) pA/pF; apamin: (108.33±7.06) pA/pF; 4-aminopyridine: (127.73±20.56) pA/pF; glyburide: (121.53±13.83) pA/pF, all P<0.05 compared with baseline).

CONCLUSIONS: Large-conductance calcium-activated potassium channel and voltage-gated potassium channel are the major constituents of potassium channels in CASMCs.DHA can activate potassium channels in CASMCs, mainly the large conductance calcium-activated potassium channel, thus dilate coronary arteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app