Add like
Add dislike
Add to saved papers

Domoic Acid Poisoning as a Possible Cause of Seasonal Cetacean Mass Stranding Events in Tasmania, Australia.

The periodic trend to cetacean mass stranding events in the Australian island state of Tasmania remains unexplained. This article introduces the hypothesis that domoic acid poisoning may be a causative agent in these events. The hypothesis arises from the previously evidenced role of aeolian dust as a vector of iron input to the Southern Ocean; the role of iron enrichment in Pseudo-nitzschia bloom proliferation and domoic acid production; and importantly, the characteristic toxicosis of domoic acid poisoning in mammalian subjects leading to spatial navigation deficits. As a pre-requisite for quantitative evaluation, the plausibility of this hypothesis was considered through correlation analyses between historical monthly stranding event numbers, mean monthly chlorophyll concentration and average monthly atmospheric dust loading. Correlation of these variables, which under the domoic acid stranding scenario would be linked, revealed strong agreement (r = 0.80-0.87). We therefore advocate implementation of strategic quantitative investigation of the role of domoic acid in Tasmanian cetacean mass stranding events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app