Add like
Add dislike
Add to saved papers

Improving time-frequency domain sleep EEG classification via singular spectrum analysis.

BACKGROUND: Manual sleep scoring is deemed to be tedious and time consuming. Even among automatic methods such as time-frequency (T-F) representations, there is still room for more improvement.

NEW METHOD: To optimise the efficiency of T-F domain analysis of sleep electroencephalography (EEG) a novel approach for automatically identifying the brain waves, sleep spindles, and K-complexes from the sleep EEG signals is proposed. The proposed method is based on singular spectrum analysis (SSA). The single-channel EEG signal (C3-A2) is initially decomposed and then the desired components are automatically separated. In addition, the noise is removed to enhance the discrimination ability of features. The obtained T-F features after preprocessing stage are classified using a multi-class support vector machines (SVMs) and used for the identification of four sleep stages over three sleep types. Furthermore, to emphasise on the usefulness of the proposed method the automatically-determined spindles are parameterised to discriminate three sleep types.

RESULT: The four sleep stages are classified through SVM twice: with and without preprocessing stage. The mean accuracy, sensitivity, and specificity for before the preprocessing stage are: 71.5±0.11%, 56.1±0.09% and 86.8±0.04% respectively. However, these values increase significantly to 83.6±0.07%, 70.6±0.14% and 90.8±0.03% after applying SSA.

COMPARISON WITH EXISTING METHOD: The new T-F representation has been compared with the existing benchmarks. Our results prove that, the proposed method well outperforms the previous methods in terms of identification and representation of sleep stages.

CONCLUSION: Experimental results confirm the performance improvement in terms of classification rate and also representative T-F domain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app