Add like
Add dislike
Add to saved papers

Perceptual Temporal Asymmetry Associated with Distinct ON and OFF Responses to Time-Varying Sounds with Rising versus Falling Intensity: A Magnetoencephalography Study.

Brain Sciences 2016 August 6
This magnetoencephalography (MEG) study investigated evoked ON and OFF responses to ramped and damped sounds in normal-hearing human adults. Two pairs of stimuli that differed in spectral complexity were used in a passive listening task; each pair contained identical acoustical properties except for the intensity envelope. Behavioral duration judgment was conducted in separate sessions, which replicated the perceptual bias in favour of the ramped sounds and the effect of spectral complexity on perceived duration asymmetry. MEG results showed similar cortical sites for the ON and OFF responses. There was a dominant ON response with stronger phase-locking factor (PLF) in the alpha (8-14 Hz) and theta (4-8 Hz) bands for the damped sounds. In contrast, the OFF response for sounds with rising intensity was associated with stronger PLF in the gamma band (30-70 Hz). Exploratory correlation analysis showed that the OFF response in the left auditory cortex was a good predictor of the perceived temporal asymmetry for the spectrally simpler pair. The results indicate distinct asymmetry in ON and OFF responses and neural oscillation patterns associated with the dynamic intensity changes, which provides important preliminary data for future studies to examine how the auditory system develops such an asymmetry as a function of age and learning experience and whether the absence of asymmetry or abnormal ON and OFF responses can be taken as a biomarker for certain neurological conditions associated with auditory processing deficits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app