Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Partitioning the variance in calorie restriction-induced weight and fat loss in outbred mice.

Obesity 2016 October
OBJECTIVE: An increased understanding of the factors influencing interindividual variation in calorie restriction (CR)-induced weight loss is necessary to combat the current obesity epidemic. This study investigated the partitioning of the phenotypic variation in CR-induced wight loss.

METHODS: Two generations of male and female outbred MF1 mice raised by their biological mother or a foster mother were studied. Mice were exposed to 4 weeks of 30% CR when 6 months old.

RESULTS: Heritability was estimated at 0.43 ± 0.12 for CR-induced changes in body mass and 0.24 ± 0.10 for fat mass using mid-parent-offspring regressions. No significant relationships between weight loss in fathers or foster mothers and offspring were observed. Partitioning of phenotypic variance in weight loss using maximum likelihood modeling indicated 19 ± 17% of the variation could be attributed to additive genetic effects, 8 ± 14% to maternal effects during pregnancy, and <1% to maternal effects during lactation. A narrow-sense heritability around 0.50 was observed for ad libitum food intake and general activity.

CONCLUSIONS: A large part of individual variation in CR-induced weight loss could be attributed to additive genetic and maternal effects during pregnancy, but not to maternal effects in lactation. Genetic differences in food intake and general activity may play a role in determining these effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app