Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A novel mathematical model of ATM/p53/NF- κB pathways points to the importance of the DDR switch-off mechanisms.

BMC Systems Biology 2016 August 16
BACKGROUND: Ataxia telangiectasia mutated (ATM) is a detector of double-strand breaks (DSBs) and a crucial component of the DNA damage response (DDR) along with p53 and NF- κB transcription factors and Wip1 phosphatase. Despite the recent advances in studying the DDR, the mechanisms of cell fate determination after DNA damage induction is still poorly understood.

RESULTS: To investigate the importance of various DDR elements with particular emphasis on Wip1, we developed a novel mathematical model of ATM/p53/NF- κB pathways. Our results from in silico and in vitro experiments performed on U2-OS cells with Wip1 silenced to 25 % (Wip1-RNAi) revealed a strong dependence of cellular response to DNA damages on this phosphatase. Notably, Wip1-RNAi cells exhibited lower resistance to ionizing radiation (IR) resulting in smaller clonogenicity and higher apoptotic fraction.

CONCLUSIONS: In this article, we demonstrated that Wip1 plays a role as a gatekeeper of apoptosis and influences the pro-survival behaviour of cells - the level of Wip1 increases to block the apoptotic decision when DNA repair is successful. Moreover, we were able to verify the dynamics of proteins and transcripts, apoptotic fractions and cells viability obtained from stochastic simulations using in vitro approaches. Taken together, we demonstrated that the model can be successfully used in prediction of cellular behaviour after exposure to IR. Thus, our studies may provide further insights into key elements involved in the underlying mechanisms of the DDR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app