Add like
Add dislike
Add to saved papers

Protein-protein interaction network construction for cancer using a new L1/2-penalized Net-SVM model.

Identifying biomarker genes and characterizing interaction pathways with high-dimensional and low-sample size microarray data is a major challenge in computational biology. In this field, the construction of protein-protein interaction (PPI) networks using disease-related selected genes has garnered much attention. Support vector machines (SVMs) are commonly used to classify patients, and a number of useful tools such as lasso, elastic net, SCAD, or other regularization methods can be combined with SVM models to select genes that are related to a disease. In the current study, we propose a new Net-SVM model that is different from other SVM models as it is combined with L1/2-norm regularization, which has good performance with high-dimensional and low-sample size microarray data for cancer classification, gene selection, and PPI network construction. Both simulation studies and real data experiments demonstrated that our proposed method outperformed other regularization methods such as lasso, SCAD, and elastic net. In conclusion, our model may help to select fewer but more relevant genes, and can be used to construct simple and informative PPI networks that are highly relevant to cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app