Add like
Add dislike
Add to saved papers

Water/cortical bone decomposition: A new approach in dual energy CT imaging for bone marrow oedema detection. A feasibility study.

Physica Medica : PM 2016 December
INTRODUCTION: Many studies aimed at validating the application of Dual Energy Computed Tomography (DECT) in clinical practice where conventional CT is not exhaustive. An example is given by bone marrow oedema detection, in which DECT based on water/calcium (W/Ca) decomposition was applied. In this paper a new DECT approach, based on water/cortical bone (W/CB) decomposition, was investigated.

MATERIALS AND METHODS: Eight patients suffering from marrow oedema were scanned with MRI and DECT. Two-materials density decomposition was performed in ROIs corresponding to normal bone marrow and oedema. These regions were drawn on DECT images using MRI informations. Both W/Ca and W/CB were considered as material basis. Scatter plots of W/Ca and W/CB concentrations were made for each ROI in order to evaluate if oedema could be distinguished from normal bone marrow. Thresholds were defined on the scatter plots in order to produce DECT images where oedema regions were highlighted through color maps. The agreement between these images and MR was scored by two expert radiologists.

RESULTS: For all the patients, the best scores were obtained using W/CB density decomposition.

CONCLUSIONS: In all cases, DECT color map images based on W/CB decomposition showed better agreement with MR in bone marrow oedema identification with respect to W/Ca decomposition. This result encourages further studies in order to evaluate if DECT based on W/CB decomposition could be an alternative technique to MR, which would be important when short scanning duration is relevant, as in the case of aged or traumatic patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app