Add like
Add dislike
Add to saved papers

Genetic variation and association mapping of waterlogging tolerance in chrysanthemum.

Planta 2016 December
MAIN CONCLUSION: Forty-five molecular markers were detected significantly associated with chrysanthemum' waterlogging tolerance, and four favorable parental lines were identified as potential donors for improving waterlogging tolerance in chrysanthemum. The productivity of chrysanthemum is downgraded by waterlogging soils, which has driven a search for germplasm showing an enhanced level of waterlogging tolerance (WT). As yet little is known regarding the mode of inheritance of WT in chrysanthemum. The study set out to characterize the extent of genetic variation for WT represented in a collection of one hundred chrysanthemum accessions by testing them under both greenhouse and field conditions. A membership function value of waterlogging (MFVW), which integrated a wilting index, a chlorosis score and the proportion of dead leaf in waterlogged plants, was used as a measure of WT. The variation for MFVW among plants grown in the greenhouse (two experiments) was generally higher than that generated in field-grown (one experiment) plants. The MFVW broad sense heritability was 0.82, and the phenotypic coefficient of variation (31.8 %) was larger than the genetic one (28.8 %). Association mapping (AM) identified 45 markers related to WT: 25 by applying the general linear model (GLM) + principal component (PC) model, 16 by applying the mixed linear model (MLM), 31 by applying the MLM + Q matrix model and 12 by applying the MLM + PC model. Of the associated markers, eight and two were predictive in two and three experiments within all models, respectively; the proportion of the phenotypic variance explained by the eight associations ranged from 6.3 to 16.4 %. On the basis of their harboring all four of the leading markers E2M16-2, SSR150-6, E19M16-1 and E10M10-12, the varieties 'Nannong Xuefeng', 'Qx097', 'Nannong Xunzhang' and 'Finch' were identified as potential donors for future improvement of WT in chrysanthemum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app